
Pining for the Fjords

Wichtig

This program, and most importantly, the data it generates, is
intended for your personal use only. In jurisdictions
recognizing rudiments of workers' rights, employers even
asking employees to collect such data are breaking the law.
In others, you should fight any attempt to impose the use of
this or any other similar program.

Pftf is another take at time keeping and work time accounting. I
wrote it when I finally got down to a 30h/week contract to see that I
don't do too much overtime. While I was about it, I figured I could
build this thing into something that would let me find out if all the
organization and meeting business really is that much of a time sink.
Pftf lets you:

• Keep track of how much time you spent working on what,
• Figure out how much work you are/were supposed to do,

taking holidays, vacation, sick time, etc., into account,
• Build graphs showing the acquired data.

Note that you will probably need to do some configuration to use
pftf. See INSTALL and pining --help-config.

For the Impatient
After installation, simply run pining to create your .pftf directory.
Create a file ~/.pftf/config containing something like this:

[general]
wClasses = Vac, Sic, Tra, Qual, Dev, Data, Comm, Admin, Mail, Orga
hoursPerDay = 7.5
[gui]
width: 56

(you'll want to adapt this to your needs and likings). Run tkpftf,
ideally telling your window manager to dock it. Click on the work
classes as you go along doing your work.
To evaluate, run pining to find out the stats for the day, pining
week or pining month for the respective time intervals. Add
the -p option to get the distribution of time spent on the various
wClasses over the time displayed.
At the beginning of the following month, run
pining -m -1 graph to get a chart sowing the collected data
in pined.pdf. Then run pining archive to get old data out of
the way.

To find out about time tracking from the shell prompt, vacation,
colour and, in general, what all this really means, read on.

Usage
Almost everything in pftf accesses the work time file (recording the
work times, WTF in what's below).
There are three programs you will be using:

1. tkpftf -- a GUI for entering dates, times and labels to the WTF.
2. pineday -- a command line program for entering occupations

filling a whole day into the WTF.
3. pining -- a command line program that evaluates the contents

of the WTF.

tkpftf
This is the first interface to time tracking you should try. It is
supposed to be dockapp-sized. The width of the window is
controlled through the [gui] width setting, its height is then
computed from the wClasses to be displayed and the [gui] labelFont
setting.
You probably want to use your window manager to embed it in a
dock, make it always-on-top, or similar. You can use the [gui] title
setting to adapt the window title if necessary.
Btw., given the simplicity of the input format, it would not be hard
to write alternative input UIs. Contributions are welcome.

pineday
Use this program to add entire days to your pining file. Here's the
output of pineday --help:
usage: pineday [options] <label> <date> [<end-date>]
 adds day(s) to the work times. Dates may leave out months and
 years for their current values and must otherwise be in ISO format,
 e.g., 15, 11-14, 2000-11-14

options:
 -h, --help show this help message and exit

So, to say you'll be on vacation on the 15 of the current month, type:

pineday Vac 15

To say you traveled from October 20th through 25th:

pineday Trav 10-20 10-25

Pineday will not add holidays or weekends even if they are included
in the range (if you really need to do that, you can only do it
manually at this point).

The lines pineday leaves in the WTF are interpreted as meaning
"Worked as many hours as specified in hoursPerDay on those days".
If you log work on days added by pineday using the GUI, it counts
on top of these hours.

pining
This is the main interface to the suite. Here's its built-in help:
usage: pining [options] [<action>] -- compute pining times.
 Actions include: week, quit, edit, graph, makecli, day, month, archive
 you can also pass a wClass as action.

options:
 -h, --help show this help message and exit
 -a, --with-archive add archived data for computation
 -d DAY, --day=DAY output for DAY instead of current day
 -m MONTH, --month=MONTH
 output for MONTH instead of current month
 -y YEAR, --year=YEAR output for YEAR instead of current year
 -o FILE, --output-to=FILE
 output graphics to FILE
 -p, --percents output distribution by label
 -H, --help-config Show help on items available for
 /home/msdemlei/.pftf/config and exit
 -S, --help-holidays Show holidays known to pftf and exit
 -C, --help-colours Show available colours and exit

The actions mean:

• nothing given -- compute for the specified day
• week -- compute for the specified week
• month -- compute for the specified month
• graph -- create a graph for the specified month (requires

pychart)
• edit -- bring up the timekeeping file in the editor specified in

the environment variable VISUAL, locking it (see Locking)
• archive -- move all lines not pertaining to the current month to

an archive file.
• a wClass or "quit" -- write a timestamp with the current label to

the WTF, or end current label for quit.
• makecli -- see Alternative CLI

For most actions, by default the time spent and the time yet due will
be printed. With -p, you get the distribution by label on top of that.
The day, month, and year options can be negative; they will then be
interpreted relative, e.g.,:

pining -m -1 graph

will output the graph for last month,:

pining -d -1 -p

will show your work distribution for the last day. Note that the
combination of negative days, months, and years may take some
thought to understand and thus should be avoided.
pining graph will write a graph of the selected month's work
times to a file; by default, this is pined.pdf. You can override this
using the -o option and/or the defaultOutputName setting in the plot
section; as is good custom, a dash means stdout.
pining archive will move all lines from some other month
than the current one from the pining file to an archive location. You
should to this monthly, since most operations pining does take the
entire pining file into account. After data is archived, you must give
the -a flag to include it in any computations. For example, after a
pining archive, pining -m -1 month will not see any
work done any more, you would have to say pining -am -1.

WTF format
Pftf doesn't use a database back end, which would be massive
overkill for what is done here. Instead, there is a simple, flat text
file.
There are times when you forgot to log out, break or unbreak or
change a label in the GUI. When that happens, say pining edit.
This brings up the editor you have configured in the VISUAL
environment variable, and you can correct the timestamps. You
should probably refrain from adding new lines altogether unless you
are able to read and interpret error messages.
Note that if you set the [general] allowBlanksInLabels option to
True (default is False), you must make sure your editor does not
convert tabs to spaces (quite a few do unless you configure them).
There are three kinds of lines in the WTF:

• <timestamp><tab><label> -- these signify the start of a new
time interval (and, if one was already open, the end of the last).
The interval will receive <label> as label.

• <timestamp> -- signifies the end of an interval, either because a
break started or because no label was selected.

• <date><tab><label> -- signifies a whole day was spent pining.
Lines like this can be freely interspersed with the other two.
This is used for vacation, travel, and similar things.

where <tab> may be a sequence of blanks if allowBlanksInLabels is
False (the default).

Locking
To avoid messing up the pining file, it is locked while it is changed
or read. Locking is done via symbolic links in the file system (you
can see them in ~/.pftf). It may happen that a program malfunctions
and fails to remove the lock. This is called a "stale lock". A program
trying to lock the file will fail to do so, and you will have to remove
the lock file manually.
However, make sure that the lock file really is stale. It's not always
easy to do that, but under at least under Linux, the lock file really is
a link pointing to the /proc entry of the locking process. You can use
this to check what process holds the lock. Try, e.g.,:

pining edit

This will open your editor and leave the pinging file locked. In
another window, you can try this again (the command will appear to
hang for about 10 seconds):
msdemlei@victor:/home/msdemlei > pining edit
/usr/bin/pining: File locked. Remove /home/msdemlei/.pftf/lock_pining.tsv if the lock is stale

The interesting part is the path to the lock file given in the error
message. If you're not sure why the lock is still there, you can do:
msdemlei@victor:/home/msdemlei > cat /home/msdemlei/.pftf/lock_pining.tsv/cmdline | tr '\000' ' '
/usr/bin/python /usr/bin/pining edit

(the tr magic makes the output a bit more readable) -- so, you see the
link probably isn't stale but you forgot to close an editor. On the
other hand, if the output is something like this:
cat: /home/msdemlei/.pftf/lock_pining.tsv/cmdline: No such file or directory

there's a good chance the lock is stale (of course, it could be held
from a process on another machine; similarly, if some weird
command line is given above, it's perfectly possible that the lock is
stale and the process id of the crashed program has been reused; so,
use your human intelligence).
Since it does lock handling, it's a good idea to use pining edit
as opposed to editing ~/.pftf/pining.tsv directly to fix problems.
The timekeeping GUI will inform you if you try to change a locked
file. As the error message states: The event will not be recorded.

Alternative CLI
If you want to set labels without using the GUI, you can use
pining <label> or pining quit to stop. This may be
convenient for automated logging, e.g., in logout scripts or when
certain activities are linked to the execution of specific binaries.
Also, you can bind such a command to keystrokes, probably in your
window manager. The dockappish thingy picks up these changes by
polling the WTF. The poll interval can be configured in [gui]
pollInterval.
Since it's a bit of a waste to pull in the python runtime to produce a
timestamp, you can make pining generate a binary tailored to your
settings using pining makecli. This will leave an executable
named pinestamp in your current directory, of about 4k on x86
architectures. Call it like pining, with either quit or a wClass.
If you change wClass or the name or location of the WTF, you'll
have to rebuild pinestamp.
Note: pinestamp currently ignores locks and does not lock the WTF
itself. I may change this at some point. Don't hold your breath,
though.

To Do
Some things I'll want to see in pftf aren't yet there. Things that'll
come include:

• less resource intensive "dockapp" -- a little C implementation,
probably based on the window maker dockapp support code,
would be nice. The python/tkinter stuff is too fat for a dockapp
IMHO.

• Putting the date formats into settings was a folly. Undo.

	For the Impatient
	Usage
	tkpftf
	pineday

	pining
	WTF format

	Locking
	Alternative CLI
	To Do

